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DETERMINING THE HEAT-TRANSFER CONSTANTS OF AN 

ORTHOTROPIC LAYER 

E. A. Belov, G. Ya. Sokolov, A. S. Starkov, 
and V. P. Zotov 

UDC 536.2.08 

We propose a method for the calculation of the principal coefficients of the heat-conduction sensor of a flat orthotropic 
layer, based on results from a nonsteady experiment. 

Methods have been proposed in [1, 2] to determine the heat-transfer parameters of anisotropic materials without destruction 

of their integrity. The object of the study in this case can only be a massive body which can be assumed to be semibounded from 

the standpoint of heat. In the following we discuss the possibility of determining the thermophysical characteristics of anisotropic 

materials in the form of black sheets or of coatings on metal structures. 
Let us examine an orthotropic layer in an initial uniform temperature field. Let one of its boundary surfaces be forcibly maintained 

at a constant temperature, while the other surface is insulated against heat, with the exception of a rectangular area that is acted 

upon by a source of heat arbitrarily distributed over the surface. Let us introduce into this examination the coordinate system (x, 

y, z), connected to the orthotropy axes, as is shown in Fig. 1. The temperature field t(x, y, z, r) for the layer under these conditions 

will serve as the solution for a boundary-value problem of the form: 

02t 02t Ozt Ot 
Ox ~ + ~.,~ - -  + ~z - -  co - -  -- 0, (1) Oy z Oz z Ox 

t (~c, v, z, o ) =  o, (2) 

t (x, y, 0, ~ ) =  0, (3) 

Ot (x, y, 8, ~) f q (x, y, ~), x, g E S, 
Oz -~ l O, x, y E S .  (4) 

The function t(x, y, z, r) tends toward zero at infinity along the coordinates (x, y) together with the first derivatives. 
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Fig. 1. The thermal diagram of the experiment. 
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Fig. 2. Error in the determination of the effective heat-source 

width. ~, %. 

We will apply the following integral transformation to problem (1)-(4): 

o 0  

r(x, v, z ) =  t't (x, v, z, "0 d-c. (5) 
0 

If the energy released by the heat source during the experiment is limited, the temperature fields in the layer over the passage 
of time relaxes to the original state and the boundary-value problem is transformed as follows: 

act . agt agt 
~ ~ + ~ b~- + ~" o-T = o, (6) 

t(x, y, 0 ) =  0, (7) 

~,z aT(x, g, a) i Q (x, y), x, y E S, 
az - / O, x, g ~ S, (s) 

where the function Q(x, y) has the sense of the energy density for the heat source. 

Let us change to the coordinate system (r r/) connected to the source and derived from the original rotation through some 
angle cz about the z axis: 

- -  ~. i 2 , O Q  a ~t (~,~cos2(z 1- vs n a) ~-~ + 2sin (z cosa(~,~ - -  ~'v) O ~  + 

(9) 
a~'t off 
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The form of the boundary conditions on transition to the new system obviously does not change. 

Let us integrate the derived equation over the coordinate r/. We obtain 

(~'~ c ~  + ~u sin~a) - ~  Ozt -~ k~ OZtot ~ = O, 0o) 

a~ (~, ~) _ i O (~), ~ ~< ~o, (11) 
Oz I O, ~ > ~o. 

Let us undertake a scale transformation of the coordinate ~ according to C : ~/~1, where 

( k~ cosZ~ + ku sinZcr ~ i/2 (12) 
/ 

As a result we obtain a two-dimensional isotropic boundary-value problem defined by the relationships 

OZt azt (13) 
a~,2 H- Oz 2 - 0 ,  

o~ (~,, 8) _ i Q (~'), ~' ~ ~o, 
kz (14) 

Oz -- I O, ~ ' ~ 0 .  

In the following we will limit ourselves to the special ease of  uniform distribution of the evolved heat over the surface of the 

source. The solution of  problem (13), (14) can be written with the aid of  the quadratures 

^ T t (~, 8) (~ 2 th p6 sin P~0 cos p~'dp. (15) 
k= ~ ~ p2 

Let us note that the integral transform of temperature, as determined from relationship (15), is a monotonically ascending 

function of the effective width ~0' of  the heating region. If we know the quantities (~ and ~z, having measured the temperature 

at some point at the surface z = 6, we can find the effective width ~0" of the source and, consequently, we can determine the coefficient 

of scale transformation/~l. After we have completed the second measurement, having turned the source through an angle of 90 ~ 

about the z axis, for the scale coefficient we obtain the value of #2: 

~2 = (k_~ sinZ~ -}- ku c~ ) 1/2" (16) 

Having jointly solved Eqs. (12) and (16), it is not difficult to express the coefficients of  the heat-conducting tensor A x and 

Ay in terms of  Az,/~1, #2, and (~. For example, 

k x = Z~ ~ c~ - -  Ix2 sinZ~ (17) 
cos 2a  

If the angle o~, rounding off the orientation of the orthotropy axes relative to the heat source, is not known in advance, it 

becomes nec~sary to carry out a third measurement, turning the source about the z axis through an angle of  45 ~ relative to its 

initial orientation. We then obtain 

" 9a = ( ~x cosZ (a~+ 45~) ~- ~u sin2 (~ ~- 45~ 1 .,2 (18) 

k 1 

A system of three equations for B1, ~2, and 1~ 3 makes it possible to find the angle 

1 2 2 
(z = - -  a rc tg  ~3 - -  ~] - -  ~ (19) 

2 ~ - ~ 
If during the measurements it turns out that Ol = ~2, then it follows from relatoinships (12) and (16) that a = 45 ~ and formulas 

(17) and (18) turn out to be unsuitable. In this case, we can recommend the formulas 
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~,:~ = ~.~ ( 2 ~  - -  ~ )  (20) 

and 

~ - -  )~z~. (21) 

Let us take note of the fact that the method with which to find the coefficient 1z is well known [3] and can be employed 

in any ITNR series apparatus [4]. Thus, in order to find the coefficients "~x and ~y, we have to determine the integral transform 

of the surface temperature of the layer and to establish an algorithm to find the effective width of the source in accordan& with 

relationship (15). Let us dwell on these questions in somewhat greater detail. Starting at some instant of time r r, the temperature 

at any point on the surface diminishes exponentially. This allows us to determine the integral in (15) on the basis of the experimental 

temperature values in the finite interval [0, rr] and the steady-state value for its rate of change: 

t (x, ty, 6, ~) d ~ - -  ! t (x, td, r ~c) dr q- t (x y, 6, Zr,, ' (22) 
o o m 

where m = -- t- ldt /dr .  

For the point at which to record temperature in finding the effective source width Go', and the parameters/zl,  #2,/z3 on 
that basis, it is expedient to use the surce center ~" = 0 = ~. Here the integral in (15) is calculated explicitly: 

~(0 ,6)  /~- ~ [ 1 - -  a -T '8  e x p (  a~026 ) h ~  --~ exp-- (ak~0 ' /6)  ] ( 2 k + l )  z . (23) 

In order to find Go' from (23) we can recommend an approximate expression of the form 

~(~;) --2-f~ 1 - -O ,94172exp  1,6056 " (24) 

The approximation error e, defined as t(0, 6) --  i(~0")/i(0, 6), is shown in Fig. 2 for various source dimensions. 

Determination of the integral on the basis of the temperature coordinate tl can be accomplished, for example, by means of 

a resistance thermometer whose current-conducting elements are positioned along the ( axis. However, for an elongated source 

G0 >> 70 (approximation of an infinite strip) the relationship between the temperature field and the coordinate ~7 is absent, the 
equation of heat conduction coincides in form with (10), and there is no need to determine the integral temperature. In conclusion, 

let us note that the proposed method can be recommended both for laboratory testing of specimens of anisotropic materials and 
for nondestructive monitoring of coatings on metal structures. 

NOTATION 

x, y, z, ~, r/, coordinates; 6, thickness of layer; t(x, y, z, r), temperature at a point in the material having coordinates x, y, 

z at the instant of time r; X x, Xy, and ~z, principal coefficients of the heat-conduction tensor; c, heat capacity; p, density of the 

material; q, density of heat flux;, Q, energy; c~, angle of coordinate system rotation; m, rate of material point cooling. 
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